av无码免费永久在线观看-国产高清中文手机在线观看-麻豆最新国产av原创精品-97久久精品人妻人人搡人人玩

世紀(jì)新能源網(wǎng)-新能源行業(yè)媒體領(lǐng)跑者,聚焦光伏、儲(chǔ)能、風(fēng)電、氫能行業(yè)。
  • 微信客服微信客服
  • 微信公眾號(hào)微信公眾號(hào)

液冷散熱式預(yù)制艙儲(chǔ)能系統(tǒng)冷卻液回路設(shè)計(jì)

   2024-02-20 電源技術(shù)雜志67990
核心提示:針對(duì)冷卻液回路設(shè)計(jì)問(wèn)題,本文提出了具有工程普適性的液冷板結(jié)構(gòu)

摘要:隨著液冷式預(yù)制艙儲(chǔ)能推廣,亟需冷卻液回路設(shè)計(jì)方法。從工程實(shí)用角度出發(fā),針對(duì)液冷板,提出了普適于常見(jiàn)3至4排電芯電池包的U形流道結(jié)構(gòu),分析了流道寬度、高度設(shè)計(jì)方法;針對(duì)液冷管路,提出管路并聯(lián)式排布和管路變徑的方案,闡述了管路流量、節(jié)流孔尺寸設(shè)計(jì)方法。依托1 MW/2 MWh海島儲(chǔ)能工程,分析了工程設(shè)計(jì)實(shí)例。收集并分析了現(xiàn)場(chǎng)運(yùn)行情況,所設(shè)計(jì)方案能將電池溫度控制至預(yù)定區(qū)間,電池溫差不超過(guò)3 ℃。

關(guān)鍵詞:液冷式儲(chǔ)能;冷卻液回路;參數(shù)設(shè)計(jì)

儲(chǔ)能預(yù)制艙空間密閉,隨著系統(tǒng)容量提高,電池密集程度越來(lái)越高,對(duì)散熱的要求不斷提升[1]。傳統(tǒng)風(fēng)冷方式散熱速度和散熱效率不高,且難以維持電池溫度均勻性[2]。在其他散熱方式中,液冷的散熱速度和散熱效率較高,易于保證電池溫度均勻性,其成本介于空氣冷卻和相變冷卻/熱管冷卻之間,技術(shù)經(jīng)濟(jì)優(yōu)勢(shì)凸顯了出來(lái)[3-4]。在儲(chǔ)能領(lǐng)域,液冷技術(shù)正開(kāi)始推廣。

冷卻液回路包括液冷板與液冷管路。現(xiàn)有研究提出了許多液冷板結(jié)構(gòu)型式,但結(jié)構(gòu)復(fù)雜難以實(shí)用化;并且側(cè)重于仿真研究,缺乏工程實(shí)用的設(shè)計(jì)方法。文獻(xiàn)[5-6]以仿真入手,研究了進(jìn)水口寬度、流道數(shù)量等參數(shù)不同組合的效果,參數(shù)的計(jì)算方法未進(jìn)行研究。液冷管路設(shè)計(jì)在現(xiàn)有研究中較少涉及,但值得重視,因?yàn)樵陬A(yù)制艙電池密集堆疊的環(huán)境下,液冷管路的合理設(shè)計(jì)對(duì)冷卻液分配和最終散熱效果具有重要影響。

針對(duì)冷卻液回路設(shè)計(jì)問(wèn)題,本文提出了具有工程普適性的液冷板結(jié)構(gòu),給出其參數(shù)的計(jì)算原則與方法;提出液冷管路并聯(lián)排布方式,給出了管路的變徑設(shè)計(jì)思路與方法。依托1 MW/2 MWh實(shí)際儲(chǔ)能工程,給出了冷卻液回路設(shè)計(jì)實(shí)際案例,分析了其現(xiàn)場(chǎng)運(yùn)行效果,為液冷式預(yù)制艙儲(chǔ)能系統(tǒng)設(shè)計(jì)提供借鑒。

一、預(yù)制艙儲(chǔ)能系統(tǒng)冷卻液回路

液冷式預(yù)制艙儲(chǔ)能系統(tǒng)冷卻液回路如圖1所示。冷卻液通過(guò)液冷機(jī)組水泵加壓進(jìn)入液冷管路,流至電池包內(nèi)液冷板,與電池?zé)峤粨Q,再通過(guò)液冷管路回流至液冷機(jī)組。液冷機(jī)組將熱量排出預(yù)制艙。

圖1 液冷式預(yù)制艙儲(chǔ)能系統(tǒng)冷卻液回路

二、液冷板設(shè)計(jì)

液冷板設(shè)計(jì)與電池包結(jié)構(gòu)有關(guān)。對(duì)于當(dāng)前常用的含3至4排電芯的電池包,本文提出一種通用的液冷板結(jié)構(gòu),給出其相關(guān)參數(shù)的計(jì)算方法。

2.1 流道形狀設(shè)計(jì)

從工程實(shí)用角度出發(fā),液冷板結(jié)構(gòu)設(shè)計(jì)需考慮的因素包括:(1)為節(jié)約空間,便于冷卻液回路安裝與檢修,液冷板進(jìn)液與出液口宜安裝在電池包同一面;(2)從制造復(fù)雜度考慮,液冷板宜布置在電池包底面;(3)為減小流阻,流道宜采用弧形并減少拐彎。

考慮上述因素,本文提出一種U形流道結(jié)構(gòu),如圖2所示,包含1個(gè)進(jìn)液口和出液口,2條邊流道與2條中間流道。為保證電芯換熱量相同,對(duì)于3排電芯,中間流道寬度為邊流道一半,兩條中間流道與一排電芯換熱;對(duì)于4排電芯,中間流道寬度與邊流道相同,每條流道與一排電芯換熱。

圖2 液冷板結(jié)構(gòu)示意圖

2.2 流道寬度設(shè)計(jì)

流道寬度設(shè)計(jì)從電池?fù)Q熱的需求入手。電池的換熱需求包括散熱與制熱需求。散熱需求為設(shè)計(jì)的最大充放電倍率下電池的發(fā)熱功率,可由電池測(cè)試得到。制熱需求在電池運(yùn)行于低溫環(huán)境下才會(huì)存在,電池在低溫靜置后可能需要經(jīng)過(guò)加熱才能達(dá)到可工作狀態(tài),所需的加熱功率即為制熱需求。制熱需求也可由電池測(cè)試得到。

取散熱與制熱需求的較大值作為電池?fù)Q熱需求。冷卻液與液冷板發(fā)生對(duì)流換熱,熱對(duì)流換熱公式為:

2.3 流道高度設(shè)計(jì)

在冷卻液流量確定的情況下,液冷板高度不是唯一確定值。液冷板高度的選擇需考慮如下因素:(1)電池包空間的限制;(2)寬度在大于2.2節(jié)設(shè)計(jì)值的基礎(chǔ)上,可以結(jié)合高度一起調(diào)整。流量一定時(shí),寬度與高度影響截面大小,從而影響冷卻液流速,流速越大,冷卻液回路總流阻(進(jìn)出口壓力差)越大。這將決定液冷機(jī)組水泵選型。

通常液冷板高度取10 mm內(nèi)可滿足要求。實(shí)際應(yīng)用中,可初步確定流道高度,在系統(tǒng)其余參數(shù)也確定后,通過(guò)冷卻液回路仿真,檢驗(yàn)系統(tǒng)流阻和流量,流阻和流量滿足即確定冷板高度。

三、液冷管路設(shè)計(jì)

3.1 管路排布方式設(shè)計(jì)

儲(chǔ)能預(yù)制艙含多個(gè)電池簇,電池簇含多個(gè)電池包。為使電池包冷卻液流量均勻,本文提出并聯(lián)式液冷管路排布方案,即電池簇管路并聯(lián),單電池簇內(nèi)各電池包管路也并聯(lián),如圖3所示。

圖3 液冷管路并聯(lián)結(jié)構(gòu)

3.2 管路流量設(shè)計(jì)

3.3 節(jié)流孔孔徑設(shè)計(jì)

為了保證各電池包流量均衡,避免下層電池包流量不足,本文采用變徑管路設(shè)計(jì)。為減少設(shè)計(jì)制造成本,管路一般采用標(biāo)準(zhǔn)化管路,變徑的思路在于采用節(jié)流三通,即圖4所示的不同層次電池包三通采用不同的內(nèi)徑。三通內(nèi)徑按如下方法確定。

圖4 節(jié)流三通設(shè)計(jì)方案

均衡流量的本質(zhì)是使冷卻液到達(dá)不同電池包的壓力損失相同。冷卻液流過(guò)管路產(chǎn)生的壓力損失包括沿程損失、截面縮小損失和擴(kuò)大損失。對(duì)于不同層次電池包而言,沿程損失的差異為冷卻液在垂直方向上的路程差異;截面縮小和擴(kuò)大損失為流經(jīng)三通的損失,既存在于垂直方向,也存在于水平方向。

式(10)中的變量為管路與三通內(nèi)徑。由于采用標(biāo)準(zhǔn)管路,管路內(nèi)徑可先確定,因此式(10)的變量為三通內(nèi)徑。進(jìn)一步的,為避免三通尺寸過(guò)多,三通垂直方向出入口內(nèi)徑可保持一致,則式(10)的變量?jī)H為頂部與底部三通的水平方向出口內(nèi)徑。在設(shè)計(jì)頂部與底部三通的水平方向出口內(nèi)徑后,其他層級(jí)電池包對(duì)應(yīng)的三通水平方向出口內(nèi)徑,從上往下遞增。

四、工程設(shè)計(jì)實(shí)例

4.1 儲(chǔ)能系統(tǒng)主要參數(shù)

本文以某海島微電網(wǎng)1 MW/2 MWh預(yù)制艙儲(chǔ)能系統(tǒng)為例。該儲(chǔ)能系統(tǒng)結(jié)構(gòu)如圖5所示,電池艙主要參數(shù)如下:電池額定容量為280 Ah,額定電壓3.2 V,最大充放電倍率0.5 C,電池長(zhǎng)、寬、高分別為174、68、207 mm;單電池包含3排共33個(gè)電池,電池包長(zhǎng)、寬、高分別為1 060、640、230 mm;單電池簇含7個(gè)電池包。該系統(tǒng)共有10個(gè)電池簇,在熱管理上劃分為2個(gè)子系統(tǒng),每個(gè)子系統(tǒng)含5個(gè)電池簇,液冷回路獨(dú)立設(shè)置。

圖5 某海島1 MW/2 MWh預(yù)制艙儲(chǔ)能系統(tǒng)

4.2 初步設(shè)計(jì)

4.2.1 液冷板

在評(píng)估電池?fù)Q熱的需求時(shí),本工程所用電芯在設(shè)計(jì)的最大充放電倍率0.5 C下的發(fā)熱功率為12 W。由于工程運(yùn)行的環(huán)境溫度不低于0 ℃,根據(jù)所用電芯特性,在不低于0 ℃條件下可進(jìn)行0.5 C充放電,對(duì)制熱量要求很低,因此換熱需求Pcell為12 W。

利用式(1)和式(2)求取流道寬度。傳熱系數(shù)h為670 W/(m2·K);制冷時(shí)冷卻液控制的目標(biāo)溫度為18 ℃,電池的目標(biāo)溫度為25 ℃,因此ΔTdiff =7 ℃;電芯厚度W為68 mm。計(jì)算得到流道寬度最小值D為38 mm。

在考慮流道高度時(shí),電池包高度對(duì)流道高度有一定的限制作用。注意到電芯長(zhǎng)度為174 mm,比流道寬度D的初設(shè)值大很多,說(shuō)明流道寬度的可調(diào)整裕度大。因此高度的設(shè)計(jì)值確定為3 mm,后續(xù)將通過(guò)調(diào)整寬度D來(lái)改變截面大小,從而調(diào)整系統(tǒng)總流阻。

4.2.2 液冷管路

首先計(jì)算管路流量。冷卻液水乙二醇的比熱容c為3.3 kJ/(kg·℃),密度為1 071 kg/m3;冷卻液允許溫升ΔTrise取2 ℃。計(jì)算得到電池包支管路流量要求Qpack為3.4 L/min,通過(guò)式(4)可計(jì)算電池簇和主管路的流量要求。主管路流量要求為至少120 L/min。

在計(jì)算節(jié)流三通孔徑時(shí),管路采用標(biāo)準(zhǔn)管路,主管路、電池簇支管路、電池包支管路內(nèi)徑分別選取為32、16、12 mm,三通垂直方向出入口內(nèi)徑選取為14 mm;水乙二醇粘度μ為0.003 94 Pa·s,每段電池簇支管路長(zhǎng)度l為280 mm。通過(guò)式(5)~(10)計(jì)算,當(dāng)?shù)撞咳ㄋ椒较虺隹趦?nèi)徑選取為10 mm,計(jì)算得到頂部三通水平方向出口內(nèi)徑為5.6 mm。因此,三通水平方向出口內(nèi)徑應(yīng)從5.6 mm到10 mm遞增。

4.3 優(yōu)化與校驗(yàn)

本工程電池溫差的目標(biāo)是不超過(guò)5 ℃。在4.2節(jié)初步設(shè)計(jì)結(jié)果的基礎(chǔ)上進(jìn)行優(yōu)化與校驗(yàn)。首先,液冷板流道高度不調(diào)整,通過(guò)調(diào)整寬度調(diào)節(jié)流阻。其次,雖然節(jié)流三通孔徑理論上應(yīng)從上到下嚴(yán)格遞增,但為了避免孔徑類型過(guò)多給制造和選型帶來(lái)困難,在優(yōu)化與校驗(yàn)中,電池簇上層3個(gè)三通水平出口孔徑將選擇一種參數(shù),下層4個(gè)三通水平出口孔徑選擇一種參數(shù)。這樣能夠兼顧流量均衡與制造難度。最后需通過(guò)仿真校驗(yàn)電池溫差目標(biāo)得到滿足。

通過(guò)仿真,當(dāng)下層4個(gè)三通水平方向出口孔徑選擇10 mm,上層3個(gè)三通水平方向出口孔徑選擇6~7 mm時(shí),各電池包流量的差異變化不大;選取6~7 mm范圍之外的參數(shù)時(shí),各電池包流量的差異有所增加。因此上層3個(gè)三通水平方向出口孔徑最終選擇為7 mm。

在確定流道高度、節(jié)流三通孔徑的基礎(chǔ)上,對(duì)不同管路流量、液冷板流道寬度進(jìn)行仿真,分析電池溫差與進(jìn)出液口壓差。部分結(jié)果如表1所示,可得到如下結(jié)論:

(1)流量120 L/min、流道寬度66 mm可以將溫差控制在目標(biāo)5 ℃臨界,增大流量能減小溫差;

(2)適當(dāng)增加液冷板流道寬度增加了換熱面積,能減小電池溫差、減小流阻;

(3)當(dāng)流量從200 L/min提高至250 L/min,進(jìn)出液口壓差將增加。當(dāng)流量增大到一定程度時(shí),減小電池溫差的效果已經(jīng)不明顯。對(duì)于液冷板流道寬度66 mm而言,流量250與200 L/min的條件下,電池溫差基本相同。

表1 選取不同參數(shù)的設(shè)計(jì)結(jié)果

綜上考慮,優(yōu)化后的方案為上層3個(gè)和下層4個(gè)節(jié)流三通水平出口孔徑分別為7和10 mm,液冷板流道寬度66 mm,液冷板流道高度3 mm,主管路流量選取200 L/min。

對(duì)優(yōu)化后的方案進(jìn)行仿真。由主管路流量值200 L/min,可折算出電池包支管路流量設(shè)計(jì)值為5.71 L/min。圖6展示了電池包支管路流量,頂部與底部電池包支管路流量分別為6.18、4.72 L/min。流量均值為5.62 L/min,與設(shè)計(jì)值基本一致。由于兼顧實(shí)際孔徑選擇的便利性,上層流量有所偏高。本文進(jìn)一步通過(guò)溫度場(chǎng)仿真驗(yàn)證溫差控制效果。

針對(duì)流量最高和最低的電池包,進(jìn)行電池包溫度仿真,電池工作于最大充放電倍率0.5 C,賦予電芯內(nèi)部極片發(fā)熱功率,電池長(zhǎng)度方向間距4 mm,厚度方向間距1.8 mm。電池包內(nèi)溫度如圖7所示,兩個(gè)電池包內(nèi)電池最大溫差分別為2.9和3.0 ℃,兩電池包所有電池最大溫差為3.0 ℃,滿足不超過(guò)5 ℃的溫差目標(biāo)。

圖6 管路流場(chǎng)仿真結(jié)果

圖7 電池包溫度場(chǎng)仿真結(jié)果

五、現(xiàn)場(chǎng)運(yùn)行情況

對(duì)第4節(jié)設(shè)計(jì)的海島1 MW/2 MWh預(yù)制艙儲(chǔ)能工程實(shí)例開(kāi)展現(xiàn)場(chǎng)運(yùn)行分析。熱管理策略如圖8所示,目標(biāo)是將電池溫度控制在20~25 ℃區(qū)間,分為制冷和制熱模式。

(1)制冷:當(dāng)電池最高溫度Tcell_max>30 ℃時(shí),啟動(dòng)制冷,下發(fā)液溫目標(biāo)值Tset=18 ℃和回差ΔTmargin=3 ℃。制冷至Tcell_max降至25 ℃時(shí)結(jié)束。

(2)制熱:當(dāng)電池最低溫度Tcell_mmin<15 ℃時(shí),啟動(dòng)制熱,下發(fā)液溫目標(biāo)值Tset=30 ℃和回差ΔTmargin=5 ℃。制熱至Tcell_min升至20 ℃時(shí)結(jié)束。

圖8 熱管理策略

實(shí)際工程中在電池包內(nèi)布置6個(gè)溫度傳感器,如圖9所示。溫度傳感器將數(shù)據(jù)上送電池管理系統(tǒng)。調(diào)取電池管理系統(tǒng)數(shù)據(jù),分析電芯溫度、液冷機(jī)組的出水和進(jìn)水口溫度。

圖9 電池包內(nèi)溫度傳感器布置

5.1 制冷工況

對(duì)含系統(tǒng)完整充放電循環(huán)的某9 h進(jìn)行分析,充放電倍率為設(shè)計(jì)的最大充放電倍率0.5 C。子系統(tǒng)1、2的電流、荷電狀態(tài)(state of charge, SOC)、電芯溫度及液冷管路進(jìn)出口液溫如圖10所示。

圖10 制冷模式溫度曲線

從圖10可以得出:

(1)大約在時(shí)間t =0.5 h,電芯最高溫度>30 ℃,啟動(dòng)制冷;大約在t =6 h,電芯最高溫度<25 ℃,制冷結(jié)束;

(2)制冷過(guò)程中,管路進(jìn)口液溫在15~22 ℃波動(dòng),電芯溫度維持在34 ℃以下;

(3)電芯最大溫差不超過(guò)3 ℃。

5.2 制熱工況

在某96 h時(shí)段內(nèi),儲(chǔ)能系統(tǒng)靜置,但由于氣溫低,熱管理系統(tǒng)在此期間自動(dòng)進(jìn)入制熱模式。子系統(tǒng)1、2的電流、SOC、電芯溫度及液冷管路進(jìn)出口液溫如圖11所示。

圖11 制熱模式溫度曲線

從圖11可以得出:

(1)大約在時(shí)間t =72.68 h,子系統(tǒng)1電芯最低溫度<15 ℃,啟動(dòng)制熱;大約在t =80 h,電芯最低溫度>20 ℃,結(jié)束制熱。類似的,子系統(tǒng)2啟動(dòng)和停止制熱的時(shí)間大約在t =36.5 h和t =43.9 h。

(2)加熱過(guò)程中,加熱速率穩(wěn)定在約0.95 ℃/h,電芯溫度維持在14~22 ℃。

(3)電芯最大溫差不超過(guò)3 ℃。

六、結(jié)論

本文對(duì)液冷散熱式預(yù)制艙儲(chǔ)能系統(tǒng)冷卻液回路展開(kāi)了設(shè)計(jì)。液冷板方面,提出一種可通用于常見(jiàn)的含3至4排電芯電池包的U形流道結(jié)構(gòu),給出了流道寬度、高度參數(shù)的設(shè)計(jì)方法;液冷管路方面,為均衡各電池包流量,提出管路并聯(lián)式排布以及管路變徑的設(shè)計(jì)方案,闡述了液冷管路流量、節(jié)流三通尺寸的設(shè)計(jì)方法。

以某海島1 MW/2 MWh預(yù)制艙儲(chǔ)能為例,開(kāi)展工程設(shè)計(jì)實(shí)例分析。運(yùn)用所提方法設(shè)計(jì)了冷卻液回路參數(shù),通過(guò)仿真對(duì)參數(shù)進(jìn)行了優(yōu)化與校驗(yàn)。

現(xiàn)場(chǎng)運(yùn)行情況表明,設(shè)計(jì)方案能夠?qū)㈦姵販囟瓤刂圃?0~25 ℃區(qū)間,電池溫差不超過(guò)3 ℃。

參考文獻(xiàn):

[1]袁鐵江,楊南,張昱,等. 基于Surrogate的預(yù)裝式儲(chǔ)能電站布局優(yōu)化[J].高電壓技術(shù), 2021, 47(4): 1314-1323.

[2]LU Z, YU X, WEI L, et al. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement[J].Applied Thermal Engineering, 2018, 136: 28-40.

[3]朱信龍,王均毅,潘加爽,等. 集裝箱儲(chǔ)能系統(tǒng)熱管理系統(tǒng)的現(xiàn)狀及發(fā)展[J].儲(chǔ)能科學(xué)與技術(shù), 2022, 11(1): 107-118.

[4]陳通,孫國(guó)華,王明強(qiáng),等. 基于液體的動(dòng)力電池?zé)峁芾硐到y(tǒng)性能研究[J].電源技術(shù), 2019, 43(4): 658-661.

[5]劉鵬. 純電動(dòng)汽車動(dòng)力電池整體式冷板性能研究[D].長(zhǎng)春:吉林大學(xué),2021.

[6]勞永春. 液冷式鋰離子電池?zé)峁芾硐到y(tǒng)設(shè)計(jì)及優(yōu)化研究[D].重慶:重慶交通大學(xué),2021.

 
反對(duì) 0舉報(bào) 0 收藏 0 評(píng)論 0
 
更多>同類資訊
2024全球光伏品牌100強(qiáng)榜單全面開(kāi)啟【申報(bào)入口】 2024第四屆中國(guó)高比例風(fēng)光新能源電力 發(fā)展研討會(huì)
推薦圖文
推薦資訊
點(diǎn)擊排行
 
主站蜘蛛池模板: 国产裸体xxxx视频在线播放| 国产精品无码一区二区三区| 精品国产乱码久久久久久郑州公司| www片香蕉内射在线88av8| 亚洲av无码成人精品区日韩| 免费久久人人爽人人爽av| 中文字幕乱码无码人妻系列蜜桃| 國产一二三内射在线看片| 天美麻花果冻视频大全英文版| 久久综合久久综合九色| 久久久久亚洲av无码专区桃色| 麻豆网神马久久人鬼片| 欧美96在线 | 欧| 最新国产成人ab网站| 国产精品无码av天天爽| 亚洲av蜜桃永久无码精品| 大肉大捧一进一出好爽视频动漫 | 日韩av片无码一区二区不卡| 久爱www人成免费网站| 亚洲熟妇无码另类久久久| 台湾佬中文娱乐22vvvv| 久久精品国产亚洲av电影网| 欧美精品v国产精品v日韩精品| 全黄h全肉边做边吃奶| 少妇厨房愉情理9仑片视频| 另类老妇奶性生bbwbbw| 色翁荡息又大又硬又粗又视频图片 | 软萌小仙自慰喷白浆| 无码中文人妻在线一区| 边做边流奶水的人妻| 未满十八18禁止免费无码网站| 午夜性刺激免费看视频| 欧美freesex黑人又粗又大| 男女超爽视频免费播放| 国精品无码一区二区三区在线| 久久久久久国产精品mv| 狠狠色丁香婷婷久久综合| 中国女人内谢69xxxx免费视频| 亚洲中文字幕久久精品无码a| 精品国产一区二区三区色欲| 精品一区二区三区免费毛片爱 |